

11th International Geant4 Course in Korea 2024

First Step in Geant4: Examples and Documentation (based on previous Geant4 courses)

Yeon Soo Yeom, Ph.D.

Department of Radiation Convergence Engineering,

Yonsei University – Mirae Campus

Covered topics

This lesson is about taking the first steps in Geant4, it shows how to sniff around examples and documentation

Geant4 installation

Examples

- ✓ Build and examine exampleB1
- ✓ Basic examples
- ✓ Extended examples
- ✓ Advanced examples

Documentation

- ✓ Installation Guide
- ✓ Documentation for Application/Toolkit Developers

User support

Step #1: Geant4 website

Where to find our documentation, download the code, access the user forum, inspect future events, ...

Step #2: Install Geant4

The installation guide is available at https://geant4-userdoc.web.cern.ch/UsersGuides/InstallationGuide/html/

❖ Refer to the guide for installation dependencies, supported platforms and cmake options

Example of Geant4 installation:

❖ Download source code from https://geant4.web.cern.ch/support/download or from github, then

Bash - Example of Geant4 (latest patch) installation

\$ unzip geant4-11.2.2.zip

\$ mkdir geant4-11.2.2-build; cd geant4-11.2.2-build

\$ cmake -DCMAKE_INSTALL_PREFIX=/path-to-install/geant4-11.2.2-install -DGEANT4_INSTALL_DATA=ON - DGEANT4_USE_QT=ON -DGEANT4_BUILD_MULTITHREADED=ON /path-to/geant4-11.2.2/

\$ make –j 6

\$ make install

Selected *cmake* options:

- download and install data libraries (see lessons on physics)
- use qt for visualization
- build geant4 with multithreaded capability

Step #3: Build examples (1/2)

Examples (geant4/examples/) are useful applications to learn Geant4 features (from basic to advanced)

❖ Building example B1, the first basic example

Bash – Building example B1

```
$ source /path-to/geant4-11.2.2-install/bin/geant4.sh
$ cmake -DGeant4 DIR=/path-to/geant4-11.2.2-install/lib/Geant4-11.2.2/
/path-to/geant4-11.2.2/examples/basic/B1/
$ make
                                     Several files are created when you compile an example.
                                     Look for the executable file and the *.mac file (macro card setting some parameters)
$ Is
CMakeCache.txt
                   Makefile
                               exampleB1
                                             exampleB1.out
                                                               run1.mac
                                                                           vis.mac
                                                                                      CMakeFiles
cmake install.cmake
                          exampleB1.in
                                            init vis.mac
                                                               run2.mac
$ ./exampleB1
```


Step #3: Build examples (2/2)

Examples (geant4/examples/) are useful applications to learn Geant4 features (from basic to advanced)

❖ Building example B1, the first basic example Tue Nov 29 11:06:19 2022 Bash – Building example B1 control \$ source /path-to/geant4-11.2.2-install/bin/geant4.s particle \$ cmake -DGeant4_DIR=/path-to/geant4-11.2.2-ins /path-to/geant4-11.2.2/examples/basic/B1/ physics lists physics_engine \$ make Several files ar Look for the ex Geant4 \$ Is Threads: All Q 🗊 🔛 CMakeCache.txt Makefile exampleB1 exam /vis/viewer/set/hiddenMarker true /vis/viewer/set/viewpointThetaPhi 120 150 exampleB1.in # Re-establish auto refreshing and verbosity: cmake install.cmake init v /vis/viewer/set/autoRefresh true /vis/viewer/refresh /vis/verbose warnings Visualization verbosity changed to warnings (3) \$./exampleB1 #/vis/viewer/flush Changing export format to "jpg" Session:

Step #4: Shoot particles

Once you have built any Geant4 application, shooting particles inside and watching the result is irresistible

```
/gun/particle mu-
/gun/energy 1.0 GeV
/run/beamOn 1
```

/gun/particle e-/gun/energy 1.0 GeV /run/beam0n 1

Step #5: Sniff around example B1 (1/4)

Examining code from examples is one of the best ways to learn

Example: the main() function

```
geant4-11.2.2/examples/basic/B1/exampleB1.cc
```

```
int main(int argc,char** argv) {
  // some code
  // Construct the default run manager
  auto* runManager =
   G4RunManagerFactory::CreateRunManager(G4RunManagerType::Default);
 // Set mandatory initialization classes
  // Detector construction
  runManager->SetUserInitialization(new DetectorConstruction());
  // Physics list
  G4VModularPhysicsList* physicsList = new QBBC;
  physicsList->SetVerboseLevel(1);
  runManager->SetUserInitialization(physicsList);
  // User action initialization
  runManager->SetUserInitialization(new ActionInitialization());
 // some code
```


Step #5: Sniff around example B1 (2/4)

Examining code from examples is one of the best ways to learn

Example: the main() function

Every Geant4 application has a run manager

There are different run manager *types* (single-threaded *vs.* multi-threaded)

Both the *physic list* and the *detector geometry* are passed to the run manager

and user actions too...

```
geant4-11.2.2/examples/basic/B1/exampleB1.cc
int main(int argc,char** argv) {
  // some code
 // Construct the default run manager
 auto* runManager =
   G4RunManagerFactory::CreateRunManager(G4RunManagerType::Default);
  // Set mandatory initialization classes
  // Detector construction
  runManager->SetUserInitialization(new DetectorConstruction());
  // Physics list
 G4VModularPhysicsList* physicsList = new QBBC;
  physicsList->SetVerboseLevel(1);
  runManager->SetUserInitialization(physicsList);
  // User action initialization
  runManager->SetUserInitialization(new ActionInitialization());
  // some code
```


Step #5: Sniff around example B1 (3/4)

Examining code from examples is one of the best ways to learn

Example: the
DetectorConstruction() class

geant4-11.2.2/examples/basic/B1/include/DetectorConstruction.hh

```
class DetectorConstruction : public G4VUserDetectorConstruction
{
   public:
        DetectorConstruction();
        ~DetectorConstruction() override;

   G4VPhysicalVolume* Construct() override;

// some code
};
```

geant4-11.2.2/examples/basic/B1/src/DetectorConstruction.hh

```
G4VPhysicalVolume* DetectorConstruction::Construct()
{
   // some code
   G4Box* solidWorld = // ...
   G4LogicalVolume* logicWorld = // ...
   G4VPhysicalVolume* physWorld = // ...
   // some code
}
```


Step #5: Sniff around example B1 (4/4)

Examining code from examples is one of the best ways to learn

♦ Example: the DetectorConstruction() class

Users are responsible for creating the simulated geometry

Geant4 provides *virtual* classes to be inherited by user code that *overrides* the virtual methods

Solids, logical volumes and physical volumes are created in the :: Construct() method

```
geant4-11.2.2/examples/basic/B1/include/DetectorConstruction.hh
```

```
class DetectorConstruction : public G4VUserDetectorConstruction
{
  public:
    DetectorConstruction();
    ~DetectorConstruction() override;

  G4VPhysicalVolume* Construct() override;

// some code
};
```

geant4-11.2.2/examples/basic/B1/src/DetectorConstruction.hh

```
G4VPhysicalVolume* DetectorConstruction::Construct()
{
   // some code
   G4Box* solidWorld = // ...
   G4LogicalVolume* logicWorld = // ...
   G4VPhysicalVolume* physWorld = // ...
   // some code
}
```


Step #6: Basic examples (1/3)

Basic examples demonstrates simple features on simplified geometries (good for learning)

- ★ Example B1 (previous slides): simple volumes and scoring with stepping action
- ★ Example B2: magnetic field, scoring with sensitive detectors and hits, step limiter

Step #6: Basic examples (2/3)

Basic examples demonstrates simple features on simplified geometries (good for learning)

- ◆ Example B1 (previous slides): simple volumes and scoring with stepping action
- ◆ Example B2: magnetic field, scoring with sensitive detectors and hits, step limiter
- ◆ Example B3 (PET system): placement with rotations, scoring with scorers, radioactive source

Step #6: Basic examples (2/3)

Basic examples demonstrates simple features on simplified geometries (good for learning)

- Example B1 (previous slides): simple volumes and scoring with stepping action
- Example B2: magnetic field, scoring with sensitive detectors and hits, step limiter
- ◆ Example B3 (PET system): placement with rotations, scoring with scorers, radioactive source
- Example B4: geometry with replicas, saving histograms and ntuples with g4analysis
- ★ Example B5: multiple sensitive detectors, defining UI commands, g4analysis equivalent to the Hands On 2~4

Step #7: Extended and advanced examples (1/2)

Extended examples demonstrate specific Geant4 features and more complex use cases (some requires external libraries)

◆ They are divided in macro areas: common, eventgenerator, g3tog4, medical, parameterisations, polarisation, visualization, analysis, electromagnetic, exoticphysics, geometry, optical, persistency, radioactivedecay, biasing, errorpropagation, field, hadronic, parallel, physicslists, runAndEvent

Step #7: Extended and advanced examples (1/2)

Extended examples demonstrate specific Geant4 features and more complex use cases (some requires external libraries)

◆ They are divided in macro areas: common, eventgenerator, g3tog4, medical, parameterisations, polarisation, visualization, analysis, electromagnetic, exoticphysics, geometry, optical, persistency, radioactivedecay, biasing, errorpropagation, field, hadronic, parallel, physicslists, runAndEvent

Advanced examples demonstrate complex, real-life solutions from domain-specific communities (HEP, biomedical-physics, space science, ...)

◆ Each example is a standalone Geant4 simulation targeting a specific application: doiPET, hadrontherapy, microelectronics, xray_telescope, CaTS, STCyclotron, eRosita, human_phantom, nanobeam, ChargeExchangeMC, air_shower, fastAerosol, iort_therapy, purging_magnet, amsEcal, gammaknife, IAr_calorimeter, radioprotection, HGCal_testbeam, brachytherapy, gammaray_telescope, medical_linac, underground_physics, ICRP110_HumanPhantoms, composite_calorimeter, gorad, microbeam, xray_fluorescence

Step #8: Refer to the Documentation

The following documents are accessible through the Geant4 website

- ◆ Book for Application Developers [link]: introduces the first-time user to Geant4, provides a description of the available tools and supply the practical information required to develop and run simulation applications
- ◆ Physics Reference Manual [link]: presents the theoretical formulation, model, or parameterization of the physics interactions and describes the probability of the occurrence of an interaction and the sampling mechanisms required to simulate it
- ◆ Users Guide for Toolkit Developers [link]: provides information for those who want to understand or refer to the detailed design of the toolkit, as well as procedures for extending the functionality of the toolkit

Step #9: Refer to the users support channels

Geant4 code can be inspected on

◆ Doxygen [link]: every class and file is available and fully *hyper-linked* It is useful to overview a class including its *inheritance*

Similarly Geant4 code is accessible through the LXR Code Browser

◆ LXR [link]

Step #10: Refer to the forums

Users can reach the Geant4 community via the

- **♦ Geant4 Forum** [link]
 - ❖ Topics are divided into 9 categories: forum issues, getting started, geometry fields transportation, physics list, physics processes models and cross sections, particles track event run biasing, recording visualizing and persisting data, ideas and requirements, applications
 - Signing-up is required to post a topic
- **♦ Geant4 Technical Forum** [indico]
 - Regular meetings between the Geant4 developers and the users community

Some recommendations: how to learn

Some recommendations: how to do

Copying and Pasting from Stack Overflow

This question was closed as off topic

O'RLY©

Progressive Stupidity. deviant art. com

Some recommendations: *try to avoid*

Recap of Examples and Documentation

Geant4 is a modular code made of \sim 2 million lines of code \rightarrow be patient, it takes time to master it

Few recommended steps:

- ◆ Start from basic examples
 - Isolate their building blocks
 - ♣ Adopt the "change something and see what happens" mind
- ◆ Inspect Geant4 classes on Doxygen
- ◆ Refer to the documentation or post your questions on the user forum

